26
Aug
By Mayank Bawa in Analytics, Analytics tech, Blogroll, Database, MapReduce on August 26, 2008
   

Pardon the tongue-in-cheek analogy to Oldsmobile when describing user-defined functions (UDFs), but I want to draw out some distinctions between this new class of functions that In-Database MapReduce enables.

Not Your Granddaddy's Oldsmobile

While similar on the surface, in practice there are stark differences between Aster In-Database MapReduce and traditional UDF’s.

MapReduce is a framework that parallelizes procedural programs to offload traditional cluster programming. UDF’s are simple database functions and while there are some syntactic similarities, that’s where the similarity ends. Several major differences between In-Database MapReduce and traditional UDF’s include:

Performance: UDF’s have limited or no parallelization capabilities in traditional databases (even MPP ones).  Even where UDF’s are executed in parallel in an MPP database, they’re limited to accessing local node data, have byzantine memory management requirements, require multiple passes and costly materialization.  In constrast, In-Database MapReduce automatically executes SQL/MR functions in parallel across potentially hundreds or even thousands of server nodes in a cluster, all in a single-pass (pipelined) fashion.

Flexibility: UDF’s are not polymorphic. Some variation in input/output schema may be allowed by capabilities like function overloading or permissive data-type handling, but that tends to greatly increase the burden on the programmer to write compliant code.  In contrast, In-Database MapReduce MR/SQL functions are evaluated at run-time to offer dynamic type inference, an attribute of polymorphism that offers tremendous adaptive flexibility previously only found in mid-tier object oriented programming.

Manageability: UDF’s are generally not sandboxed in production deployments. Most UDF’s are executed in-process by the core database engine, which means bad UDF code can crash a database. SQL/MR functions execute in their own process for full fault isolation (bad SQL/MR code results in an aborted query, leaving other jobs uncompromised). A strong process management framework also ensures proper resource management for consistent performance and progress visibility.


Post a comment

Name: 
Email: 
URL: 
Comments: